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Abstract
We show the existence of a noncommutative spacetime structure in the context
of a complete discussion on the underlying spacetime symmetries for the
physical system of a free massless relativistic particle. The above spacetime
symmetry transformations are discussed for the first-order Lagrangian of
the system where the transformations on the coordinates, velocities and
momenta play important roles. We discuss the dynamics of this system in
a systematic manner by exploiting the symplectic structures associated with
the four-dimensional (non-)commutative cotangent (i.e. momentum phase)
space corresponding to a two-dimensional (non-)commutative configuration
(i.e. target) space. A simple connection of the above noncommutativity (NC) is
established with the NC associated with the subject of quantum groups where
SLq,q−1(2) transformations play a decisive role.

PACS numbers: 11.10.Nx, 03.65.−w, 02.20.−a

1. Introduction

The noncommutative geometry and corresponding noncommutative field theories have
generated a great deal of interest during the last few years due to their clear appearance
in the context of string theories and their close cousins D-branes and M-theories
(see, e.g., [1–4]). The end points of the open strings, trapped on the D-branes, turn out
to be noncommutative in the presence of the antisymmetric (Bµν = −Bνµ) potential Bµν that
constitutes the 2-form

(
B = 1

2! (dxµ ∧ dxν)Bµν

)
background field B. It has also been shown

that, in a specific limit, the string dynamics can be described as a minimally coupled gauge
field theory defined on a noncommutative space [2]. From a distinctly different perspective,
the theoretical consideration of the quantum gravity and black hole physics entails upon the
spacetime to become noncommutative in nature [5, 6]. In other words, the NC is the benchmark
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of theoretical physics at an energy scale that is comparable to the Planck energy [6]. Physically,
this NC amounts to the existence of an uncertainty relation between spacetime position
operators, which implies that the simultaneous measurement of the spacetime positions is not
possible to a better accuracy than the Planck length (see, e.g., [5–10]).

Even though the NC is connected with the theoretical high energy physics applicable at
the energy scale of the order of Planck energy, it is expected that the physical consequences
of these NCs can be tested in the low energy effective actions for some physically interesting
systems. This is why, to test the existence of such a kind of NC, some experimental proposals
have been made [11–13] where it has been argued that only the quantum-mechanical effects
are good enough to shed some light on the very existence of the NC in spacetime. There is an
alternative possibility, however. One can construct the low-energy theories by exploiting the
basic ideas behind the NC in spacetime and can propose the physical consequences of these
NCs on some experimentally testable physical quantities. On the theoretical side of the latter
possibility, mention can be made of the noncommutative Chern–Simons theory [14] and the
noncommutative standard model [15] where effects of the NC have been computed for some
interesting physical quantities. However, experimentally, they are yet to be tested.

It is well known that the physical insights and the spacetime symmetries behind the free
and/or interacting relativistic (super) particle are at the heart of the modern developments
in the understanding of the (super) string theories and (super) gravity theories. It is also
well understood that a massless scalar relativistic particle is endowed with more spacetime
symmetries than its massive counterpart. In particular, the Lagrangian for the free massless
relativistic particle respects the full conformal group of spacetime symmetries which is not
the case for the free massive relativistic particle (cf section 2). In a recent paper [16], it has
been shown that the physical system of a massless relativistic particle possesses a new scale
type of spacetime symmetry (in addition to the full conformal group of spacetime symmetries)
which leads to an extension of the conformal algebra such that the NC in spacetime emerges
naturally (see, e.g., [16] for details). Furthermore, in a recent couple of papers [17, 18], the
reparametrization symmetry and gauge symmetry of the massive relativistic particle have been
considered where the NC in spacetime has been shown to appear for the specific choices of the
gauge in the framework of the Dirac bracket formalism. The system of massive and massless
relativistic (super) particles has also been considered in the framework of quantum groups
where the NC has been introduced in the cotangent (i.e. momentum phase) space of the above
physical system [19–22].

In our present paper, we attempt to study the impact of the NC (in the spacetime
structure) by laying emphasis on the dynamical aspects (i.e. equations of motion) as
well as the spacetime symmetries associated with the free massless scalar relativistic
particle. For this purpose, we exploit the symplectic structures in (i) the definition
of the noncommutative Poisson brackets (and corresponding commutators), and (ii) the
Legendre transformation to obtain the first-order Lagrangian. In the entire text, we focus on the
symmetry properties of the first-order Lagrangian function together with the Euler–Lagrange
equations of motion that emerge from this function. The main results of our present endeavour
are in three folds. First, we attempt to look for the impact of the NC on the equations of motion
of the free massless relativistic particle. Second, we exploit the mathematical sophistication
of symplectic structures to study the details of the commutative and NC dynamics. Third,
we establish a connection between (i) the NC of spacetime that emerges from the scale type
of spacetime symmetry, and (ii) the NC of spacetime that originates from the quantum group
GLq,q−1(2) (and its special case SLq,q−1(2)) symmetry. It should be noted that all these results
are valid only up to the lowest order (i.e. ∼β = e2p2) in the parameters of the scale symmetry
transformations that lead to the existence of NC in the theory.
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In the context of the above results, it is pertinent to point out that, by thorough discussions
on the key mathematical aspects of the dynamics, we find that the equations of motion remain
unaffected due to the presence of the NC generated by the new scale type of spacetime
symmetry in the theory. This observation is true to the lowest order in the parameters
(∼β = e2p2) of the above scale type of spacetime symmetry transformation. It should be
noted that, even though the NC exists in the commutators to the lowest order (∼β = e2p2,
cf (3.6)), the equations of motion (cf (4.10), (4.32)) and the Hamiltonian (cf footnote just after
(4.32)) remain unaffected due to this NC because of the fact that all the terms, linear in the
parameters (∼β = e2p2), cancel out. Furthermore, we have devoted a great deal of discussions
on the derivation of the components of the covariant symplectic metric so that the equations
of motion for the canonical commutative case as well as the nontrivial noncommutative
case could be contrasted against each other with utmost accuracy (cf section 4).
However, as it turns out, the equations of motion remain unchanged even though the parameters
of NC (linear in ∼β = e2p2) are present in the covariant symplectic structure (cf (4.29)) on
the noncommutative cotangent manifold.

We have been able to demonstrate a connection of the NC associated with the new scale
type spacetime transformations to the NC associated with the quantum group GLq,q−1(2)

transformations on the phase variables where the elements of this group have been chosen in
such a way that it automatically becomes SLq,q−1(2). It turns out that the noncommutative
Poisson brackets between phase variables due to the SLq,q−1(2) symmetry transformations
reduce to the noncommutative Poisson brackets due to new scale type spacetime symmetry
transformations for the deformation parameter satisfying q2 = 1. Furthermore, the choice of
the elements of GLq,q−1(2) is such that the key q-algebraic relations among the phase variables
[22] of the free massless relativistic particle remain intact on the cotangent manifold. To be
more precise, for q2 = 1, the relationships among the phase variables (that respect Lorentz
invariance and SLq,q−1(2) invariance) remain unchanged.

The contents of our present paper are organized as follows. In section 2, we set up
the notation and conventions by discussing the bare essentials of the conformal, gauge-
and reparametrization symmetry transformations for the Lagrangian of the free massless
relativistic particle. For the paper to be self-contained, section 3 deals, in a somewhat different
manner, the NC in the spacetime structure that owes its origin to an additional scale symmetry
transformation [16]. Section 4 is devoted to the discussion of dynamics for the free massless
relativistic particle in the four-dimensional (non-)commutative cotangent manifold. In
section 5, we demonstrate a simple connection between the NC of spacetime due to an
additional scale symmetry and the NC of spacetime due to quantum group SLq,q−1(2)

symmetry. Finally, we make some concluding remarks in section 6 and point out a few
future directions for further investigations in the connected areas of research.

2. Preliminary: symmetries in Lagrangian formalism

We begin with the different looking but equivalent forms of the gauge- and reparametrization
invariant Lagrangians for a free massive relativistic particle. The particle moves on a worldline
(i.e. trajectory) that is embedded in a N-dimensional flat Euclidean target manifold1. The
specific Lagrangians, describing the above massive particle, are [23, 24]

L
(m)
0 = m(ẋ2)1/2 L

(m)
f = pµẋµ − 1

2e(p2 − m2) L(m)
s = 1

2e−1(ẋ)2 + 1
2e m2. (2.1)

1 For the Euclidean target manifold, we choose the metric δµν = diag(+1, +1, . . . , +1) and the scalar product between
two vectors Aµ and Bµ is given by (A · B) = δµνAµBν . Thus, the contravariant vectors are same as the covariant
vectors. In other words AµBµ = AµBµ = A1B1 + A2B2 + · · · + ANBN . For the sake of convenience, however, we
shall be using the upper and lower indices in the whole body of our text.
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In the above, the mass-shell condition (p2−m2 = 0) and the force-free (i.e. ṗµ = 0) motion of
the free massive relativistic particle are a couple of common features for (i) the Lagrangian with
the square root L

(m)
0 , (ii) the first-order Lagrangian L

(m)
f and (iii) the second-order Lagrangian

L(m)
s . Except for the mass (i.e. the analogue of the cosmological constant) parameter m, the

target space canonically conjugate coordinates xµ(τ) (with µ = 1, 2, . . . , N) as well as the
momenta pµ(τ) and the einbein field e(τ ) are the functions of the monotonically increasing
parameter τ that characterizes the trajectory (i.e. the worldline) of the free massive scalar
relativistic particle. Here ẋµ = (dxµ/dτ) are the generalized versions of the ‘velocity’ of
the particle. The first- and the second-order Lagrangians are endowed with the first-class
constraints �e ≈ 0 and p2 − m2 ≈ 0 in the language of the Dirac’s classification scheme
where �e is the canonical conjugate momentum corresponding to the einbein field e(τ ). The
existence of the first-class constraints on this physical system establishes the fact that this
reparametrization invariant theory of the free massive relativistic particle is a gauge theory2.
It is clear that the massless limit (i.e. m → 0) is not consistently defined for the Lagrangian
L

(m)
0 but the first- and the second-order Lagrangians do permit such a limit. The Lagrangians

for the massless free relativistic particle, derived in such a limit (i.e. m → 0), from L
(m)
f

and L(m)
s :

Lf = pµẋµ − 1
2ep2 Ls = 1

2e−1(ẋ)2 (2.2)

are not only endowed with the following Poincaré (δp), reparametrization (δr) and gauge
(δg) symmetry transformations which are also present for their massive counterparts (2.1) but
they also respect scale (δs) and conformal (δc) symmetry transformations that are not present
for the Lagrangians (2.1) for the massive free relativistic particle. In a more sophisticated
language, the breaking of the latter symmetries is said to generate the mass of the free particle.
It is interesting to check that the second-order Lagrangian Ls of (2.2) respects the following
symmetry transformations,

δgxµ = ξ

(
ẋµ

e

)
δge = ξ̇ δgLs = d

dτ

[
ξ

2

ẋ2

e2

]
δsxµ = αxµ δse = 2αe δsLs = 0

δcxµ = 2xµ(x · b) − bµx2 δce = 4e(x · b) δcLs = 0

δpxµ = ων
µxν + aµ δpe = 0 δpLs = 0

δrxµ = εẋµ δre = d

dτ
[εe] δrLs = d

dτ
[εLs]

(2.3)

where ξ(τ ), ε(τ ) are the local infinitesimal parameters corresponding to the gauge and
reparametrization symmetry transformations, respectively, and ωµν (with ωµν = −ωνµ), aµ, α
and bµ are the global infinitesimal parameters corresponding to the Poincaré transformations
(ω, a), scale transformation (α) and conformal transformations (bµ), respectively. The same

2 The Lagrangian density L
(m)
f transforms to δrL

(m)
f = (d/dτ)[(εL(m)

f )] under the transformations δrxµ =
εẋµ, δrpµ = εṗµ, δr e = (d/dτ)[(εe)] generated by the basic reparametrization τ → τ − ε(τ ) where ε(τ ) is an
infinitesimal parameter. Similarly, under the gauge transformations δgxµ = ξpµ, δgpµ = 0, δge = ξ̇ , the Lagrangian

density L
(m)
f transforms to a total derivative. Both these transformations are equivalent (with the identification ξ = eε)

for the free (i.e. ṗµ = 0) relativistic particle because both the above transformations owe their origin to the mass-shall
condition p2 − m2 = 0. Thus, conditions ṗµ = 0 and p2 − m2 = 0 are a couple of salient features for the dynamical
description of the relativistic particle.
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symmetry transformations, for the first-order Lagrangian Lf , are

δ̃gxµ = ξpµ δ̃gpµ = 0 δ̃ge = ξ̇ δ̃gLf = d

dτ

[
ξ

2
p2

]
δ̃sxµ = αxµ δ̃spµ = −αpµ δ̃se = 2αe δ̃sLf = 0

δ̃cxµ = 2xµ(x · b) − bµx2 δ̃ce = 4e(x · b)

δ̃cpµ = 2xµ(p · b) − 2bµ(x · p) − 2pµ(x · b) δ̃cLf = 0

δ̃pxµ = ων
µxν + aµ δ̃ppµ = ων

µpν δ̃pe = 0 δ̃pLf = 0

δ̃rxµ = εẋµ δ̃rpµ = εṗµ δ̃re = d

dτ
[εe] δ̃rLf = d

dτ
[εLf ].

(2.4)

It will be noted that all the above symmetry transformations for the momentum variable pµ,
present in the first-order Lagrangian Lf , are such that there is a mutual consistency among the
transformations on xµ, e and pµ so that the sanctity of the relation pµ = e−1ẋµ, derived from
Ls or Lf , could be maintained. As explained earlier, the generator of the reparametrization
transformation δr and the gauge transformation δg is the mass-shell condition p2 − m2 = 0
and p2 = 0 for the massive- and massless cases, respectively. The operator forms of the
generators of all the above ‘conformal’ transformations are

P̂ µ = ∂µ K̂µ = (
2xµxν − x2δν

µ

)
∂ν

D̂ = xµ∂µ M̂µν = xµ∂ν − xν∂µ

(2.5)

where the angular momentum operator M̂µν and the momentum operator P̂µ are the generators
of the rotation and translation that constitute the full Poincaré transformations. The scale
transformation δs is generated by the dilation operator D̂ and the conformal transformation δc

is generated by the conformal boost operator K̂µ (see, e.g., [16] for more details).

3. Additional symmetry and noncommutativity

It is clear from the starting Lagrangian L
(m)
0 in (2.1) that the Euler–Lagrange equations of

motion are: ẍµ(ẋ)2 − ẋµ(ẋ · ẍ) = 0. For the free motion ẍµ = 0 of the particle, we can choose
a gauge such that (ẋ · ẍ) = 0 and (ẋ)2 �= 0 (see, e.g., [23]). It is straightforward to note that
the mass m of the particle does not play any role at all in the dynamics of the particle. Thus,
the first- and the second-order Lagrangians of (2.1) and (2.2) produce exactly the same type of
equations of motion. These are encompassed in the free motion (ṗµ = 0) of the particle and
the definition of the canonical momentum (i.e. pµ = e−1ẋµ). In other words, the combination
of these two relationships yields the following Euler–Lagrange equation of motion from the
first- and the second-order Lagrangians

ẍµe − ẋµė = 0 ⇒ (ẋ · ẍ)e − (ẋ)2ė = 0. (3.1)

For the free motion ẍµ = 0 of the particle, we have to choose the following gauges: (ẋ · ẍ) = 0
and ė = 0 (but e �= 0). There are a few compelling reasons for the above choices. First, in
the limit (e → 0), we should recover the gauge choice imposed on the equations of motion
derived from L

(m)
0 to obtain the free motion (i.e. ẍµ = 0). Second, the einbein field e(τ ) is like

the gauge field Aµ of the Abelian 1-form gauge theory where the Lorentz gauge (∂ · A) = 0
is just the analogue of ė = 0. In fact, this gauge choice is exploited in the Becchi–Rouet–
Stora–Tyutin (BRST) quantization (see, e.g., [21, 24]) of the free massive as well as massless
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relativistic particle3. Third, it is evident that the constraint p2 ≈ 0 is the generator of the
gauge- and reparametrization symmetries (cf (2.4)) for the massless relativistic particle.
Exploiting pµ = e−1ẋµ, it can be seen that the time invariance of the above constraint
(d/dτ)[p2] = 0 (which is equivalent to (p · ṗ) = 0) implies that the gauge choices (ẋ · ẍ) = 0
and ė = 0 are consistent with the free motion ẍµ = 0 of the massless relativistic particle.
Utilizing the free motion ṗµ = 0 and the above gauge choices (i.e. ė = 0 and (ẋ · ẍ) = 0), it is
straightforward to check that the following scale transformations on the spacetime coordinate
xµ, momentum pµ and einbein field e(τ ),

xµ(τ) → Xµ(τ) = eβ(ẋ2)xµ(τ ) ≡ eβ(e2p2)xµ(τ )

pµ(τ) → Pµ(τ) = e−β(ẋ2)pµ(τ ) ≡ e−β(e2p2)pµ(τ )

e(τ ) → E(τ) = e2β(ẋ2)e(τ ) ≡ e2β(e2p2)e(τ )

(3.2)

leave the first-order Lagrangian Lf invariant primarily because of the fact that the above
transformations imply: ẋµ → Ẋµ = eβ(e2p2)ẋµ. This is an extension, albeit in a restricted
sense, of the conformal symmetries listed in (2.3) or (2.4). As a consequence, the dilatation
operator D̂ = xµ∂µ is extended to D̂∗ = (1 + β)D̂. Furthermore, the above new symmetry
allows an extension of the conformal algebra which has been discussed thoroughly in [16].
The infinitesimal version (i.e. βn ≈ 0, n � 2) of (3.2), which are of physical importance in
spacetime symmetries, are

xµ(τ) → Xµ(τ) = xµ(τ) + β(e2p2)xµ(τ )

pµ(τ) → Pµ(τ) = pµ(τ) − β(e2p2)pµ(τ)

e(τ ) → E(τ) = e(τ ) + 2β(e2p2)e(τ ).

(3.3)

It is now clear that the following canonical brackets,

[xµ, xν] = 0 [pµ, pν] = 0 [xµ, pν] = iδµν [xµ, e] = 0 [pµ, e] = 0 (3.4)

emerging from the first- and the second-order Lagrangians of the massless relativistic particle,
are now changed to their noncommutative counterparts as

[Xµ(τ),Xν(τ )] = (1 + β){[xµ(τ), β]xν(τ ) + [β, xν(τ )]xµ(τ)}
[Xµ(τ), Pν(τ )] = (1 + β){iδµν(1 − β) − [xµ(τ), β]pν(τ)}
[Pµ(τ), E(τ)] = 0 [E(τ)(τ ), E(τ)] = 0

[Xµ(τ), E(τ)] = 2(1 + β)[xµ(τ), β]e(τ ) [Pµ(τ), Pν(τ )] = 0.

(3.5)

A few comments, at this juncture, are in order now. First, it is obvious from the above that the
limit β → 0 produces the canonical brackets (3.4) for the massless free relativistic particle.
Second, the commutator between the transformed momentum fields and the einbein fields
remains the same as their untransformed canonical form. Third, the spacetime becomes
noncommutative very naturally due to the new symmetry transformations (3.2) (and its
infinitesimal version (3.3)). This should be contrasted with the NC that emerges due to
the choices of the gauge in the context of the Dirac bracket formalism (see, e.g., [17, 18]).
Fourth, it will be noted that the brackets in (3.5) are still up to the order β2. However, for
the discussion of the dynamics in the next section, we shall be concentrating only on the

3 In fact, the (anti-)BRST invariant Lagrangian Lb = pµẋµ − 1
2 e(p2 − m2) + bė + 1

2 b2 − i˙̄cċ does exploit the
gauge-fixing term ė through the Nakanishi–Lautrup auxiliary field b. In terms of the (anti-)ghost fields (c̄)c, the
nilpotent (s2

(a)b = 0) (anti-)BRST symmetry transformations s(a)b are: sbxµ = cpµ, sbpµ = 0, sbc = 0, sbe = ċ,

sbc̄ = ib, sbb = 0 and sabxµ = c̄pµ, sabpµ = 0, sabc̄ = 0, sabe = ˙̄c, sabc = −ib, sabb = 0 [21, 24].
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contributions coming from the brackets of order β. Finally, for one of the simplest choices:
β(e2p2) = e2p2, the above brackets (3.5) become

[Xµ(τ),Xν(τ )] = −2ie2(1 + e2p2){(xµ(τ )pν(τ ) − xν(τ )pµ(τ)} ≡ −2ie2M∗
µν

[Xµ(τ), Pν(τ )] = (1 + e2p2){iδµν(1 − e2p2) − 2ie2pµpν}
[Pµ(τ), E(τ)] = 0 [E(τ), E(τ)] = 0

[Xµ(τ), E(τ)] = 4ie3(1 + e2p2)pµ [Pµ(τ), Pν(τ )] = 0

(3.6)

where M∗
µν = (1 + e2p2)Mµν . This shows that (i) the NC of the spacetime in the above owes

its origin to the rotation in the off-shell (i.e. p2 �= 0) reference frame that is generated by
the (off-shell) angular momentum operator M∗

µν = (1 + β)Mµν where β = e2p2. (ii) The
antisymmetric property of the commutator (i.e. [Xµ,Xν] = −[Xν,Xµ]) is encoded in the
antisymmetric property of the angular momentum operator (i.e. M∗

µν = −M∗
νµ). (iii) It is

evident that one of the key requirements [10] of the NC (i.e.
∫

Tr[Xµ,Xν] = 0) of spacetime
geometry is fulfilled, in the above, due to the antisymmetric property of M∗

µν (see, e.g., [10]).
(iv) It is interesting to check that the brackets in (3.5) and (3.6) do satisfy all the possible
Jacobi identities among the phase-space variables (see, e.g., [16]).

4. Symplectic structures and dynamics

For the sake of simplicity, we shall focus on the motion of the free massless relativistic particle
on a two-dimensional Euclidean target (i.e. configuration) space parametrized by the coordinate
variables x1(τ ) and x2(τ ). The corresponding four-dimensional phase (i.e. cotangent) space is
parametrized by the four variables x1(τ ), x2(τ ), p1(τ ), p2(τ ) where pµ(τ) (with µ = 1, 2) are
the canonical conjugate momenta corresponding to the coordinate variables xµ(τ) (µ = 1, 2).
The following Hamiltonian function H(1),

H(1) = 1
2e(τ )p2(τ ) ≡ 1

2e(τ )
[
p2

1(τ ) + p2
2(τ )

]
(4.1)

with the canonical commutators [xµ(τ), pν(τ )] = iδµν, [xµ(τ), e(τ )] = 0, [pµ(τ), pν(τ )] =
0, [pµ(τ), e(τ )] = 0, [xµ(τ), xν(τ )] = 0, leads to the following equations of motion,

ẋµ(τ ) = −i[xµ(τ),H(1)] = e(τ )pµ(τ) ṗµ(τ ) = −i[pµ(τ),H(1)] = 0 (4.2)

which imply the validity of (3.1) as well as the free motion (i.e. ṗµ = 0) of the
massless relativistic particle. Classically, the above canonical commutators correspond to
the canonical Poisson brackets {xµ, xν}(PB) = 0, {pµ, pν}(PB) = 0, {xµ, pν}(PB) = δµν on the
four-dimensional symplectic (i.e. cotangent) manifold with the following contravariant and
covariant symplectic structures,

�AB(1) =




0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0


 �AB(1) =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 (4.3)

where ‘1’ in the round brackets after �AB and �AB stands for similar round bracket in the
Hamiltonian function (4.1) and the notation zA = (z1, z2, z3, z4) ≡ (x1, x2, p1, p2) has been
introduced in the definition of the matrix form of the symplectic structures as

�AB = Matrix({zA, zB}(PB)) �AB�BC = δA
C = �CM�MA. (4.4)
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The most general form of the Poisson brackets between any two arbitrary dynamical variables
F(z) and G(z) on the symplectic cotangent manifold is defined by exploiting the contravariant
symplectic structure as

{F(z),G(z)}(PB) = �AB∂AF(z)∂BG(z) ∂A = ∂

∂zA
. (4.5)

On the other hand, the covariant symplectic structure plays a pivotal role in the definition
of the Legendre transformation which leads to the derivation of the first-order Lagrangian
from a given Hamiltonian. In general, the symplectic structures can be functions of the phase
variables zA. In such a case, the general form of the Legendre transformation is given by (see,
e.g., [25, 26] for details)

Lf (z, ż) = zA�̄AB(z)żB − H(z) (4.6)

where the general form of the covariant symplectic structure �̄AB(z) is [25, 26]

�̄AB(z) =
∫ 1

0
dκ κ�AB(κz). (4.7)

For our present case of the symplectic structures, defined in (4.3) and satisfying (4.4), the
above formula yields �̄AB(1) = 1

2�AB(1). Modulo some total derivatives with respect to τ ,
the above equation (4.6) for the Legendre transformation produces the following first-order
Lagrangian,

Lf (1) = pµ(τ)ẋµ(τ ) − 1
2e(τ )p2(τ ) (4.8)

which is exactly the same as in (2.2) for the massless relativistic particle. The equations of
motion from the above Lagrangian lead to the derivation of exactly the same equations of
motion as given in (3.1) and the substitution pµ = e−1ẋµ in (4.8) produces Ls of (2.2).

We shall now exploit the above simple discussion in the context of the noncommutative
commutators given in (3.5) (and its special case given in (3.6)) for the choice β = e2p2. First
of all, using the infinitesimal transformations in (3.3), we obtain the transformed version of
the Hamiltonian function H(2) from its untransformed version H(1), as

H(1) = 1
2e(τ )p2(τ ) ⇒ H(2) = 1

2E(τ)P 2(τ ). (4.9)

It is interesting to point out that the form of our beginning equations of motion, derived from
H(1) and expressed in terms of the untransformed variables, remains unchanged up to the
lowest order in ∼e2p2 when the equations of motion, in terms of the transformed variables,
are derived from the transformed Hamiltonian H(2). This can be checked by considering the
following Heisenberg’s equations of motion for the transformed variables,

Ẋµ(τ ) = −i
[
Xµ(τ),H(2)

] ≡ − i

2
[Xµ(τ), E(τ)]P 2(τ ) − i

2
E(τ)[Xµ(τ), P 2(τ )]

Ṗ µ(τ ) = −i
[
Pµ(τ),H(2)

] = 0
(4.10)

where we have exploited the commutation relations of (3.6) to prove the free motion (ṗµ = 0)
of the particle. Furthermore, with the help of (3.6), it can be seen that the explicit expressions
for the commutators of (4.10), up to the order β = e2p2, are

− i

2
[Xµ(τ), E(τ)]P 2(τ ) ≈ 2(epµ)(e2p2) + O(e4p4) + · · ·

− i

2
E(τ)[Xµ(τ), P 2(τ )] ≈ E(τ)Pµ(τ) − 2(epµ)(e2p2) + O(e4p4).

(4.11)

This demonstrates that, using the non-trivial commutators of (3.6), we obtain the equations of
motion from the transformed Hamiltonian H(2)

Ẋµ(τ ) = E(τ)Pµ(τ) Ṗ µ(τ ) = 0 (4.12)
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which dynamically corresponds to the same equations of motion as ẋµ = epµ, ṗµ = 0. It
should be noted that the equations of motion remain form invariant only up to the order
β = e2p2 of the transformations in (3.2). They do not retain this form-invariance even at the
next order (i.e. β2 = e4p4). To obtain the analogue of (4.8) for the noncommutative brackets
(cf (3.6)), we have to exploit the analogues of the definitions in (4.6) and (4.7) which heavily
depend on the explicit form of the symplectic structures. To this end in mind, we obtain the
Poisson brackets from (3.6) (valid up to the order ∼e2p2) as

{Xµ(τ),Xν(τ )}(PB) = −2e2(1 + e2p2)(xµpν − xνpµ)

{Xµ(τ), Pν(τ )}(PB) = δµν − 2e2(1 + e2p2)pµpν {Pµ(τ), Pν(τ )}(PB) = 0.
(4.13)

In more explicit form, the above brackets yield the following brackets for the noncommutative
four-dimensional cotangent manifold parametrized by four phase variables4

{X1, X1}(PB) = 0 {X2, X2}(PB) = 0

{X1, X2}(PB) = J12(z) {X2, X1}(PB) = −J12(z)

J12(z) = −2e2(1 + e2p2)(x1p2 − x2p1)

(4.14)

{X1, P1}(PB) = 1 − 2e2(1 + e2p2)p2
1 ≡ S11(z)

{X2, P2}(PB) = 1 − 2e2(1 + e2p2)p2
2 ≡ S22(z)

{X1, P2}(PB) = −2e2(1 + e2p2)p1p2 ≡ S12(z)

{X2, P1}(PB) = −2e2(1 + e2p2)p2p1 ≡ S12(z)

{P1, P1}(PB) = 0 {P2, P2}(PB) = 0

{P1, P2}(PB) = 0 {P2, P1}(PB) = 0

(4.15)

where now the symbol zA stands for: zA = (z1, z2, z3, z4) = (X1, X2, P1, P2). According to
our definition in (4.4), we obtain the following contravariant symplectic structure:

�AB
(2) (z) =




0 J12(z) S11(z) S12(z)

−J12(z) 0 S12(z) S22(z)

−S11(z) −S12(z) 0 0
−S12(z) −S22(z) 0 0


 . (4.16)

The covariant symplectic structure, corresponding to the above contravariant symplectic
structure and satisfying (4.4), is

�
(2)
AB(z) = 1

S2
12(z) − S11(z)S22(z)




0 0 S22(z) −S12(z)

0 0 −S12(z) S11(z)

−S22(z) S12(z) 0 −J12(z)

S12(z) −S11(z) J12(z) 0


 . (4.17)

Exploiting definition (4.7), we compute the covariant symplectic metric �̄
(2)
AB(z) which will

be useful in the context of the Legendre transformations (4.6). It is elementary to check that

4 It should be noted that an actual computation of the Poisson brackets between spacetime variables Xµ is:
{Xµ(τ), Xν(τ)}(PB) = +2e2(1 +e2p2)(pµxν −pνxµ). However, to be consistent with the corresponding commutator
in (3.6), we have exploited the substitution (pµxν − pνxµ) = −(xµpν − xνpµ) which, to be very precise, is valid for
the usual definition of a commutator [xµpν ] = xµpν −pνxµ = iδµν . We have followed here the usual convention that
connects a commutator with the corresponding Poisson bracket (i.e. [F,G] = i{F,G}(PB)) for a couple of dynamical
variables F and G.
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�̄
(2)
ij (z) = 0 for i, j = 1, 2. The next non-trivial component of the covariant symplectic

metric is

�̄
(2)
13 (z) =

∫ 1

0
dκ κ

[
S22(κz)

S2
12(κz) − S11(κz)S22(κz)

]
(4.18)

where by explicit computation, it can be seen that, to the order ∼e2p2, we have

S22(κz) ≈ (
1 − 2e2p2

2κ
2
)

S2
12(κz) ≈ 4

(
e4p2

1p
2
2

)
κ4 ≈ 0

S11(κz) ≈ (
1 − 2e2p2

1κ
2
)

S11(κz)S22(κz) ≈ (1 − 2e2p2κ2).
(4.19)

Insertions of these values in (4.18) yield

�̄
(2)
13 (z) = −

∫ 1

0
dκ κ

[(
1 − 2e2p2

2κ
2
)

(1 − 2e2p2κ2)

]
≈ −1

2
(1 + e2p2) (4.20)

where we have used the following integrals:

−
∫ 1

0

[
dκ κ

(1 − 2e2p2κ2)

]
= 1

4e2p2

∫ 1−2e2p2

1

dt

t
≡ −1

2
(1 + e2p2) + O(e4p4) + · · ·

+2e2p2
2

∫ 1

0

[
dκ κ3

(1 − 2e2p2κ2)

]
= − p2

2

4e2p2

∫ 1−2e2p2

1

[
dt

t
− dt

]
≡ 0 + O(e4p4).

(4.21)

Thus, it is now evident that, up to the order ∼e2p2, we have

�̄
(2)
13 (z) = �̄

(2)
24 (z) = − 1

2 (1 + e2p2) �̄
(2)
31 (z) = �̄

(2)
42 (z) = + 1

2 (1 + e2p2). (4.22)

Another interesting component of the covariant symplectic metric is

�̄
(2)
14 (z) = −

∫ 1

0
dκ κ

[
S12(κz)

S2
12(κz) − S11(κz)S22(κz)

]
≈ +

∫ 1

0
dκ κ

[
S12(κz)

(1 − 2e2p2κ2)

]
(4.23)

where, up to the order ∼e2p2, S12(κz) ≈ −2e2p1p2κ
2. Ultimately, the above integral, with

the substitution 1 − 2e2p2κ2 = t , reduces to

�̄
(2)
14 (z) = −2e2p1p2

∫ 1

0
dκ

[
κ3

(1 − 2e2p2κ2)

]
≈ p1p2

2e2p4

∫ 1−2e2p2

1

[
dt

t
− dt

]
(4.24)

which yields the value of the integral equal to zero up to the order ∼e2p2. With this result, it
is straightforward to see that �̄

(2)
14 (z) = �̄

(2)
41 (z) = 0, �̄

(2)
23 (z) = �̄

(2)
32 (z) = 0. Only one more

useful computation is left over as far as the complete derivation of the covariant metric �̄
(2)
AB(z)

is concerned. This is as follows,

�̄
(2)
34 (z) = −

∫ 1

0
dκ κ

[
J12(κz)

S2
12(κz) − S11(κz)S22(κz)

]
≈ +

∫ 1

0
dκ κ

[
J12(κz)

(1 − 2e2p2κ2)

]
(4.25)

where, up to the order ∼e2p2, we have the following form for the J12(κz), namely:

J12(κz) ≈ −2e2(x1p2 − x2p1)κ
2 − 2e2(e2p2)(x1p2 − x2p1)κ

4. (4.26)

Thus, integral (4.25) finally looks in the following form:

�̄
(2)
34 (z) = −2e2(x1p2 − x2p1)

∫ 1

0
dκ

[
κ3

(1 − 2e2p2κ2)

]

− 2e2(e2p2)(x1p2 − x2p1)

∫ 1

0
dκ

[
κ5

(1 − 2e2p2κ2)

]
. (4.27)
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From our earlier discussions, it is clear that the first integral will be zero up to the order ∼e2p2.

The second integral, with the substitution 1 − 2e2p2κ2 = t , becomes

(x1p2 − x2p1)

2p2

∫ 1−2e2p2

1

[
dt

t
− 2 dt + t dt

]
(4.28)

which is equal to zero up to the order ∼e2p2. This finally implies that, up to the order ∼e2p2,
we have: �̄

(2)
34 (z) = �̄

(2)
43 (z) = 0. With the help of the above inputs, the covariant symplectic

metric �̄
(2)
AB(z), useful for the Legendre transformation (4.6), becomes

�̄
(2)
AB(z) = 1

2




0 0 −(1 + e2p2) 0
0 0 0 −(1 + e2p2)

1 + e2p2 0 0 0
0 1 + e2p2 0 0


 . (4.29)

Exploiting the above covariant symplectic metric, we obtain the first-order Lagrangian Lf (2),
using equation (4.6), as given below

Lf (2) = 1
2p1(1 + e2p2)ẋ1 + 1

2p2(1 + e2p2)ẋ2

− 1
2x1(1 + e2p2)ṗ1 − 1

2x2(1 + e2p2)ṗ2 − 1
2e

(
p2

1 + p2
2

)
(4.30)

where we have used the fact that, up to the order ∼e2p2, the Hamiltonian functions H(1)

and H(2) are one and the same. Now the stage is set to recall the dynamical restrictions
of section 3 where we have imposed ė = 0, (ẋ · ẍ) = 0 (which is also equivalent to
ė = 0, (p · ṗ) = 0). Tapping this information, the above first-order Lagrangian (with
Ẋ1 = (1 + e2p2)ẋ1, Ẋ2 = (1 + e2p2)ẋ2, Xµ = (1 + e2p2)xµ ≡ xµ(1 + e2p2)) can be recast
into

L̃f (2) = 1
2p1Ẋ1 + 1

2p2Ẋ2 − 1
2X1ṗ1 − 1

2X2ṗ2 − 1
2e

(
p2

1 + p2
2

)
(4.31)

which leads to the derivation of the following Euler–Lagrange equations of motion:

Ẋµ(τ ) = epµ ṗµ = 0. (4.32)

The above equations are same as the equations of motion (4.12) (with a bit changed notation).
Thus, the first-order Lagrangian that emerges from metric (4.29) is same as (4.8) (modulo
the fact that xµ are now replaced by Xµ) and therefore the form of the equations of motion
ẋµ = epµ and ṗµ = 0 remains unchanged up to the order ∼e2p2 as they can also be written
as Ẋµ = EPµ and ṗµ = 0. In other words, the dynamics5 remains unchanged up to the
order ∼e2p2. This feature is exactly the same as our earlier discussion on the Landau problem
where, despite the presence of the NC, the equations of motion for the charged particle under
the influence of the magnetic field remain unchanged [27].

5. Connection with quantum groups

First of all, let us recapitulate some of the pertinent points of our earlier work [22] related to
the construction of a consistent dynamics on a four-dimensional noncommutative cotangent
manifold. In this connection, it can be checked that (i) the ordinary Lorentz invariance, and
(ii) a particular (i.e. pq = 1) quantum group GLq,p(2) invariance are respected together for

5 In particular, it can be checked explicitly that H(2) = 1
2 EP 2 → H(1) = 1

2 ep2 under transformations (3.3) up to
the order ∼e2p2. Thus, despite the presence of NC in (3.6), the dynamics remains unchanged.
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any arbitrary ordering of the indices µ, ν (with µ, ν = 1, 2) in the following relationship
between the phase variables on the cotangent manifold [22]

xµxν = xνxµ pµpν = pνpµ xµpν = qpνxµ. (5.1)

The phase variables xµ (µ = 1, 2) and pµ (µ = 1, 2), in the above, undergo the following
change under the quantum group GLq,p(2) transformations(

x1

p1

)
→

(
X1

P1

)
=

(
A B

C D

)(
x1

p1

)
(

x2

p2

)
→

(
X2

P2

)
=

(
A B

C D

)(
x2

p2

) (5.2)

where the elements A,B,C,D of the 2 × 2 quantum matrix belonging to the quantum group
GLq,p(2) obey the braiding relations in rows and columns as

AB = pBA AC = qCA BD = qDB BC = (q/p)CB

CD = pDC AD − DA = (p − q−1)BC = (q − p−1)CB.
(5.3)

It will be noted that the noncommutative algebraic relations (5.1) remain form-invariant
(i.e. XµXν = XνXµ, PµPν = PνPµ,XµPν = qPνXµ) under (5.2) only for the non-zero
complex deformation parameters q, p (i.e. q, p ∈ C/{0}) satisfying the restriction: pq = 1.
In other words, the quantum group GLq,q−1(2) is responsible for the form-invariance of the
relations (5.1) on the cotangent manifold. For this group, the q-algebraic relations (5.3) among
the elements A,B,C,D reduce to the following simpler form:

AB = q−1BA AC = qCA BD = qDB

BC = q2CB CD = q−1DC AD = DA.
(5.4)

At this stage, two comments are in order. First, for our present discussion about the dynamics,
we have chosen the four-dimensional Euclidean noncommutative cotangent manifold only for
the sake of simplicity. Our present discussions, however, can be generalized to any arbitrary
2N -dimensional (N > 2) cotangent manifold in a straightforward manner. Second, it will be
noted that the elements A,B,C,D of the quantum group GLq,q−1(2) are assumed to commute
(i.e. Axµ = xµA, pµA = Apµ,AXµ = XµA, etc) with the phase variables (xµ, pµ) and
(Xµ, Pµ) in the proof of the form invariance of (5.1).

Now the stage is set for a thorough discussion on the new scale transformations for the
phase variables: xµ → Xµ = (1 + e2p2)xµ, pµ → Pµ = (1 − e2p2)pµ of equation (3.3)
for the choice β = e2p2 in the framework of the quantum groups. With this end in mind,
it can be seen that for B = 0, C = 0 in (5.2) (i) we obtain a scale type of transformations
for the phase variables (i.e. xµ → Xµ = Axµ, pµ → Pµ = Dpµ), (ii) the noncommutative
relations of (5.1) remain form-invariant for B = C = 0, and (iii) the algebraic relations (5.4)
reduce to a single relationship AD = DA. In all the above observations, we have assumed
the commutativity of the elements A,D with the phase variables xµ and pµ. This crucial
assumption must be maintained in our attempt to capture the transformations (3.3) for β = e2p2

in the framework of the quantum groups. For instance, for the choice A = (1 + e2p2) and
D = (1 − e2p2), it can be seen that AD = DA = 1 up to the order ∼e2p2. Thus, for the
above choice of A and D (with B = C = 0), we see that (i) the relationship AD = DA,
corresponding to the quantum group GLq,q−1(2) is satisfied, and (ii) the scale transformations
Xµ = (1 + e2p2)xµ and Pµ = (1 − e2p2)pµ of (3.3) (i.e. β = e2p2) are captured in
the language of the quantum group transformations. Thus, two of the above three basic
requirements are readily fulfilled. In addition, the condition AD = DA = 1 enforces the
quantum group GLq,q−1(2) to reduce to the quantum group SLq,q−1(2) because the determinant
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of the matrix becomes one (i.e. AD = 1). Finally, let us now concentrate on the form invariance
(i.e. XµXν = XνXµ, PµPν = PνPµ,XµPν = qPνXµ) of the relationships in (5.1) for the
choice A = (1 + e2p2) and D = (1 − e2p2). In this context, it is pertinent to recall that the
following noncommutative q-algebraic relations [22],

ẋµxν = xνẋµ ẋµẋν = ẋν ẋµ ẋµpν = qpνẋµ pµpν = pνpµ

eẋµ = qẋµe epµ = qpµe exµ = qxµe xµxν = xνxµ xµpν = qpνxµ

(5.5)

are valid for the massless q-deformed free relativistic particle described by the Lagrangian
L = 1

2q−1e−1ẋ2 and the Hamiltonian H = 1
2ep2 [22]. The above noncommutative q-algebraic

relations have been derived from the consistent differential calculi developed on the GLq,q−1(2)

invariant quantum hyperplane. It can be checked that the form invariance of (5.1) could be
maintained for our choice A = (1 + e2p2) and D = (1 − e2p2) only for the restriction q2 = 1.
In fact, this latter restriction emerges from the requirement XµPν = qPνXµ when we exploit
relations (5.5) that lead to

pµD = (1 − q−2e2p2)pµ pµA = (1 + q−2e2p2)pµ. (5.6)

Basically, in the above, the restriction on the deformation parameter (q) emerges because
of our demand that the commutativity requirement of our earlier discussion (i.e. pµD =
Dpµ, pµA = Apµ) should be true even if A and D are chosen to be explicitly dependent
on the phase variables. Such a requirement is very much essential because the derivation
of all the q-algebraic relations in (5.5), the definition of the q-deformed Poisson bracket
(see, equation (5.7)), etc, are based on the assumption that the elements of the GLq,q−1(2)

group commute with the physical phase variables xµ and pµ. It should be emphasized
that the restriction q2 = 1 has also appeared in the context of Landau problem [27] and
the requirement of the equivalence between the gauge symmetry and reparametrization
symmetry for the case of a q-deformed relativistic (super)particle [19–21]. It is interesting
to point out that the relations XµXν = XνXµ, PµPν = PνPµ remain sacrosanct for
the choice A = (1 + e2p2),D = (1 − e2p2) for any arbitrary value of q if we use
the noncommutative algebraic relations (5.5). This happens primarily due to the natural
commutativity xµA = Axµ, xµD = Dxµ of xµ with A and D as well as the commutativity
(1 − e2p2)(1 − q−2e2p2) = (1 − q−2e2p2)(1 − e2p2). The restriction q2 = 1 also emerges
from the equality of the Poisson brackets (4.13) with the Poisson brackets calculated from the
consideration of the quantum group GLq,q−1(2). The definition of a Poisson bracket between
two dynamical variables F(x, p) and G(x, p) on the GLq,q−1(2) invariant cotangent manifold
is [22]

{F,G}(q)

PB = ∂G

∂pλ

∂F

∂xλ

− q
∂G

∂xλ

∂F

∂pλ

(5.7)

where (i) the repeated index is assumed to be summed over (i.e. λ = 1, 2), and (ii) the
key ingredients have been taken from the differential calculi developed on the GLq,q−1(2)

invariant quantum hyperplane. It will be noted that, in the above, the derivatives are defined
as the ‘left’ derivatives. This amounts to bringing all the specific variables to the left by
exploiting the q-algebraic relations of (5.5) before the differentiation w.r.t. that specific
variable could be carried out. Exploiting the above definition, it can be seen that the following
q-deformed noncommutative Poisson brackets, analogous to (4.13), emerge in the framework
of the quantum group GLq,q−1(2) and corresponding differential calculi developed on the



12090 R P Malik

GLq,q−1(2) invariant hyperplane, namely;

{Xµ(τ),Xν(τ )}(q)

(PB) = +2q2e2[(1 + q−2e2p2)pµxν − q(1 + q−4e2p2)pνxµ]{
Xµ(τ), Pν(τ )

}(q)

(PB)
= [1 + (1 − q2)e2p2]δµν − 2q2e2[1 + q−4e2p2]pµpν

{Pµ(τ), Pν(τ )}(q)

(PB) = 0.

(5.8)

A few comments, at this juncture, are in order. First, it can be seen that in the limit q → 1, we
get back our Poisson brackets (4.13). Second, the key restriction on the deformation parameter
q, that emerges due to the equality between (4.13) and (5.8) is, once again, q2 = 1. This is
due to the fact that an extra q-factor that appears in the definition of the q-Poisson bracket in
(5.7) as well as in (5.8) (see the second term on the r.h.s. of the q-bracket {Xµ,Xν}(q)

PB) is due
to the choice of the contravariant symplectic metric (see, e.g., [22])6. Third, to shed some
more light on the left derivative, it can be seen that the explicit form of a specific q-Poisson
bracket is

{Xµ(τ),Xν(τ )}(q)

(PB) = ∂

∂pλ

[(1 + e2p2)xν]
∂

∂xλ

[(1 + e2p2)xµ]

− q
∂

∂xλ

[(1 + e2p2)xν]
∂

∂pλ

[(1 + e2p2)xµ]. (5.9)

The meaning of the ‘left derivative’ in the differentiation (∂/∂pλ)[e2p2] is the trick that, using
the q-algebraic relations of equation (5.5), the variable p2 should be brought to the left. It
can be checked that e2p2 = q4p2e2 so that p2 is reordered to the left. Now, we apply the
left derivative on it. This operation yields 2q4pλe

2. This can be further rearranged to yield
2q2e2pλ. This differentiation is carried out by exploiting the differential calculi developed
in [22]. All the Poisson brackets for the phase variables in (5.8) have been computed by
exploiting the above trick.

6. Conclusions

In our present investigation, we have demonstrated the existence of the noncommutative
spacetime structure in the context of a thorough discussion on the spacetime symmetry
properties of the physical system of a free massless scalar relativistic particle. The presence of
an additional (i.e. new) scale type of spacetime symmetry transformation for this system entails
upon the spacetime to become noncommutative in nature. This new scale type of spacetime
symmetry is drastically different from the usual scale type of symmetry that belongs to the
usual set of conformal group of spacetime symmetry transformations. As a consequence, the
usual conformal algebra gets modified and the NC in the spacetime geometry arises through
the noncommutative algebraic structure [16].

It is worthwhile to compare and contrast the usual scale spacetime symmetry and
the additional scale spacetime symmetry. The key differences are (i) the usual type of
the scale spacetime symmetry is a global symmetry (cf (2.3) and (2.4)) but the new scale
spacetime symmetry is a local one per se. (ii) The dependence of the local parameter β of
the additional new scale type of spacetime symmetry is very specific (i.e. β(ẋ2) = β(e2p2))
whereas the parameter α of the usual scale spacetime transformation is global (i.e. spacetime

6 The q-deformed Poisson bracket, expressed in (5.7), can be defined in a more symmetric fashion: {F,G}(q)

(PB) =
q−1/2(∂G/∂pλ)(∂F/∂xλ) − q+1/2(∂G/∂xλ)(∂F/∂pλ). This expression corresponds to the choice of a contravariant
symplectic metric that differs from the one chosen in [22] by a constant factor q1/2. In this form of the definition of
the Poisson bracket, the restriction q2 = 1 becomes more transparent.
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independent). (iii) It is the requirement of the free (ẍµ = 0, ṗµ = 0) motion of the massless
relativistic particle that enforces the choice of the gauges ė = 0, (ẋ · ẍ) = 0 (or equivalently
ė = 0, (p · ṗ) = 0) which ultimately turn out to be responsible for the existence of the new
scale type spacetime symmetry (cf (3.2) and (3.3)). There is no such type of criterion for the
existence of the usual scale type of spacetime symmetry (cf (2.3) and (2.4)). (iv) It is the
requirement of the consistency and complementarity between the dynamics and the spacetime
symmetries that are at the heart of the existence of the NC in spacetime structure in our present
investigation. This NC is intrinsically different from the NC that arises in the context of
the massive relativistic particle where the choice of gauges leads to the NC in the spacetime
structure in the Dirac bracket formalism [17, 18].

One of the central ingredients in our whole discussion is to focus on the impact of the NC
on the dynamics of the free massless scalar relativistic particle. In particular, the discussions
on the equations of motion for this system have been given utmost priority. As it turns out, the
NC of the spacetime does not affect the equations of motion up to the order (∼e2p2). This
feature is exactly the same as our earlier work on the Landau problem [27] where the classical
equations of motion remain unaffected by the presence of the NC in the theory. In our present
paper, we have carried out a detailed and systematic computation for the derivation of the
equations of motion from the Lagrangian and Hamiltonian formulations. The key role in all
these discussions is played by the contravariant- and covariant symplectic structures which turn
out to be responsible for (i) the systematic definition of the Poisson brackets on the cotangent
(momentum phase) space, and (ii) the consistent definition of the Legendre transformations,
respectively. In particular, section 4 of our present paper is devoted to a thorough discussion of
dynamics where we have taken into account the NC of the Poisson brackets and corresponding
symplectic structures. However, despite the presence of the parameters of NC in the covariant
symplectic metric (cf (4.29)), the dynamics remains unchanged up to the lowest order in the
parameter of the NC.

We have attempted to establish a connection between the NC of spacetime due to the
presence of a new scale type of spacetime symmetry and the NC of spacetime due to the
presence of a quantum group GLq,q−1(2) type symmetry for which a consistent dynamics has
been developed in [22]. In our present investigation, the 2N -dimensional differential calculi
and the dynamics of [22] have been reduced to the differential calculi for a four-dimensional
cotangent (momentum phase) space where the ordinary Lorentz invariance and GLq,q−1(2)

invariance are respected together for any arbitrary ordering of the Lorentz indices. The key
point, in the above connection between two types of NC, is the choice of the elements (i.e.
B = C = 0, A = (1 + e2p2),D = (1 − e2p2)) of the 2 × 2 quantum matrix belonging to
GLq,q−1(2) which entails upon (i) the spacetime to become noncommutative in nature (see,
e.g., equations (5.8), (5.9)), (ii) the quantum group transformations to capture the new scale
transformations (3.3) for β = e2p2, and (iii) the quantum group symmetry transformations
to correspond to the SLq,q−1(2) transformations because the determinant of the above 2 × 2
quantum matrix becomes one (i.e. AD = DA = 1 for B = C = 0). It should be noted,
however, that the transformations on the einbein field e(τ ) (cf (3.3)) are not captured by the
quantum group transformations. This is why the analogues of the equations of motion (4.10)
and (4.32) have not been discussed in the framework of the quantum group SLq,q−1(2). Thus,
our consideration of the connection between the NC due to the new scale spacetime symmetry
and the NC due to the quantum group SLq,q−1(2) symmetry is confined only to the analogy
between the Poisson brackets (4.13) and (5.8). As it turns out, in the limit q2 = 1, the NC in
the spacetime due to the quantum group SLq,q−1(2) symmetry transformations is reduced to
the NC of the spacetime due to the new type of scale symmetry transformations for the system
of a free massless relativistic particle.
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It would be interesting endeavour to extend our present work to the case of a
massless spinning relativistic (super) particle where the reparametrization and supersymmetric
transformations co-exist. It is expected that the consideration of this system under the super
quantum group GL√

q(1|1) [20] might turn out, at some stage, to be quite handy. Furthermore,
the noncommutative realization of the cohomological operators for the super quantum group
GLq,q−1(1|1) [28, 29] also might play some crucial roles in this context. We hope to apply
our present work to the case of a massive relativistic particle where some kinds of gauge
transformations and reparametrization transformations have been shown to be connected with
one- another under a general scheme [17]. These are some of the issues that are under
investigation and our results will be reported elsewhere [30].
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